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Abstract 

The contribution of homogeneous lattice deforma- 
tions (neglecting internal strains) to elastic properties 
of crystals with triclinic or higher symmetry is 
examined. The deformed lattice constants are 
expressed as functions of the components of the finite 
Lagrangian strain tensor, and their derivatives are 
calculated. Thus equations are obtained that relate 
the second-order elastic constants to first and second 
partial derivatives of the static crystal energy with 
respect to unit-cell parameters. With the assumption 
of a two-body Born-type interatomic potential, the 
energy derivatives were calculated analytically, and 
a rigid-body approximation was introduced to 
account for molecular groups in the crystal structure. 
Test computations of elastic constants were per- 
formed for MgF2 (rutile-type), benzene and naph- 
thalene, using literature potential parameters opti- 
mized on structural data; results are discussed with 
respect to adequacy of the potentials and of the 
approximations of the model used. 

Introduction 

The semi-empirical modelling of interatomic and 
intermolecular forces in crystals has been developed 
intensively in recent years, in order to reproduce and 
possibly predict various chemical-physical properties 
by computer simulations (Catlow & Mackrodt, 1982). 
In the past, this work was mainly performed by fitting 

* A preliminary account of part of this work was presented at 
the XIIIth International Congress of Crystallography, Hamburg, 
Federal Republic of Germany, 9-18 August 1984 (Catti, 1984). 
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the potential parameters to structural properties only, 
so that the least-energy atomic configuration 
approached the experimental one as closely as poss- 
ible (Busing, 1970; Kitaigorodskii, 1973; Williams, 
1981); such potentials were then proposed for deter- 
mining unknown crystal structures by minimum- 
energy search. In attempts to extend the modelling 
to other physical properties of crystals, elastic 
behaviour and vibrational spectroscopic frequencies 
are usually considered, as they are related to the slope 
changes of the energy hypersurface (in the space of 
atomic position vectors) at its minimum point. 
However, vibrational properties are accounted for by 
dynamical methods only, whereas the crystal elas- 
ticity can be related both to lattice dynamics and to 
the statics of equilibrium atomic configuration. In the 
former case a microscopic crystal deformation chang- 
ing with time is examined, through atomic oscillations 
during the propagation of an elastic wave (long- 
wavelength acoustic vibration mode); in the latter, a 
macroscopic static deformation of the crystal is 
assumed, implying atomic shifts from equilibrium 
positions that are constant with time. In both cases 
the elastic properties express the correlation between 
crystal strain and applied stress. The first full theory 
on the subject was developed by Born & Huang 
(1954). 

A previous partial approach (Catti, 1981) is exten- 
ded and the calculation of elastic constants by the 
method of crystal static deformation is considered 
here. The contribution of external strains will be taken 
into account by deriving equations that relate the 
elasticity tensor components to first and second par- 
tial derivatives of the crystal static energy with respect 
to lattice constants, calculated at zero strain, for tri- 
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clinic or higher symmetry. This treatment is com- 
pletely analytical, whereas other calculations (Busing 
& Matsui, 1984) are based on a numerical minimiz- 
ation of the energy simulating an external stress 
applied to the crystal  structure. In principle the 
method is not restricted to two-body central poten- 
tials, and natural lattice coordinates without 
orthogonalization are used throughout, unlike the 
approach of Catlow & Mackrodt (1982) who follow 
Born & Huang's  (1954) theory closely. 

Reliable methods for calculating elastic constants 
seem to be attractive, as experimental determinations 
of these properties are not simple and need single 
crystals with adequate quality and dimensions. On 
the other hand, a knowledge of elastic behaviour of 
solids has noteworthy importance both in materials 
science and in geophysics. In crystallography, elas- 
ticity data are required to calculate the correction of 
Bragg diffraction intensities for thermal diffuse scat- 
tering, which cannot be neglected in accurate determi- 
nations of electron density. Models of the earth 
interior are based on observations of seismic waves, 
depending on elastic properties of crystalline phases 
present in the earth mantle. 

Theory 
Strain tensors 

We consider a homogeneous deformation of the 
crystal lattice, which changes the unit-cell constants 

6 from the initial values a, b, c, a,/3, 7 = {ai}i=l to the 
final values a', b', c', a ' , /3 ' ,  7' J'atl6 = t  ~s~=~- Let O be a 
Cartesian basis, whose three orthonormal vectors 
have components with respect to the undeformed and 
deformed lattice bases forming the columns of the R 
and R' matrices, respectively; a representation of 
second-rank strain tensors in the O reference frame 
is searched, such that their components are explicit 
functions of old a~ and new a~ lattice constants. 

The fractional coordinates of a general point in 
space are left unchanged by a homogeneous deforma- 
tion of the lattice; therefore, if X and X' are the 
Cartesian coordinates of that point before and after 
the deformation, the condition of equality of coordi- 
nates with respect to the unstrained and strained 
lattice bases is 

R 'X '=  RX. (1) 

The strain tensor e (Nye, 1957) is defined by the 
relation X ' - X = e X ,  so that using (1) we obtain e =  
R ' - I R - I  (where I is the identity matrix). However, 
the e tensor also expresses rigid rotations of the whole 
lattice, while the linear Lagrangian strain tensor e 
and the finite Lagrangian strain tensor ~1 do not have 
this disadvantage (Nye, 1957; Wallace, 1972). The 
following expressions are immediately obtained for 

e and ~1: 

-- ½(e + e r )  = ½[R' - IR+ (R' - 'R)  r ]  - I, (2) 

~l------½(e+e r + e r e ) - - ½ [ ( R ' - l R ) r ( R ' - l R ) - I ] .  (3) 

Similar relationships were derived previously in a 
lengthy way by Schlenker, Gibbs & Boisen (1978). 
As the elements of the R and R' matrices are functions 
of undeformed ai and deformed a~ lattice constants, 
these are the equations required. 

The point is to decide which of the e and ~1 sym- 
metrical tensors is better suited to representing the 
lattice change in the deformation. Born & Huang 
(1954) showed that ~1 is appropriate for a strain of 
any magnitude, whereas e is adequate either for an 
infinitesimal strain or for a finite strain to the first 
order of accuracy only. However, a different aspect 
will be analysed here. From (2) and (3), both tensors 
appear to depend on R and R'. As the strain tensors 
are referred to the O basis, their dependence on R, 
which expresses the orientation between the Cartesian 
and the undeformed lattice bases, is necessary; on 
the other hand, the apparent dependence on R' 
implies that there is a correlation between strained 
and unstrained lattice bases, which has no physical 
meaning. It can be shown that for e this apparent 
dependence cannot be removed. The basic property 
of orthonormalization matrices, applied to R', gives 
(R ' - I ) rR  '-1 = G', where G' is the metric tensor of the 
deformed lattice. Substituting into (3) yields 

n = ½ ( R r G ' R - I )  • (4) 

Thus the -q tensor, unlike e, depends only on the 
metrics of the deformed lattice and not on its orienta- 
tion with respect to the undeformed one. 

The general case of a triclinic lattice deformed to 
a different geometry is examined. The standard 
orientation of the Cartesian basis with respect to the 
original triclinic cell is such that i3 = e/c, il = a*/a*,  
i2--i3 × il (Schlenker, Gibbs & Boisen, 1978); it fol- 
lows that 

1 0 0 
a sin/3 sin Y* 

cos Y 1 
0 

b sin t~ sin Y* 
R__ 

1 

c sin y* 

COS t~ cos  T* 
X 

sin  t~ 

cos/3) 
~- sin/3 / 

b sin a 

cos a 1 
D 

c sin a c 

(5) 

The simplified Voigt notation (Nye, 1957) is adopted 
to transform the 7/o and G,) components into one- 
index terms: r/i -= rhi and G~--- G~i for i = 1, 2, 3; r/4--- 
2r/23, r/5~2'r/13, ' r /6~2~'h2; G'4=2G~3, G's=2G'~3, 

1 - -  1 t ! G6 = 2G12, remembering that G, 5 = aiaj cos (a~, aJ). 
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Now the symbols ~1 and G' represent 6 x I linear 
instead of 3 ×3 square matrices; if the right-hand 
member of (4) is developed explicitly a linear form 
in the G[ quantities is obtained, according to 

~1 = Q G ' - d ,  (6) 

where Q is a 6 ×6 square matrix whose components 
are bilinear terms in the R 0 elements, and d=  
[½½½000]. If (6) is worked out in detail, explicit 
expressions can be obtained for the strain components 
n~ as functions of the deformed lattice constants a~; 
these, however, are not reported here because they 
are not strictly necessary for the following treatment. 
To calculate the expression of e according to (2), the 
orientation of the deformed triclinic cell with respect 
to basis O must be specified through the R' matrix; 
for different choices of that orientation, different 
expressions of the e tensor are obtained (cf. Appendix 
I).f Therefore, although several authors have treated 
lattice elasticity on the basis of e, the use of the finite 
Lagrangian strain tensor -q is more correct. 

Elastic equations 
If the crystal deformation is carded out isother- 

mally, the suitable thermodynamic potential to rep- 
resent this process is the Helmholtz free energy F, 
and isothermal second-order elastic constants are 
defined (Wallace, 1972) as 

Cijhk =-- ( 1 /  V)(oEF/OThj  OI"lhk)r , (7) 
n=0 

being components of a fourth-rank tensor with sym- 
metry properties Cijhk = Cjihk : Cijkh ~-" Chkij. A S  an 
extension of Hildebrand's equation of state (Tosi, 
1964), where isotropic volume variations are con- 
siderer, the changes of entropy and vibrational energy 
due to an isothermal static deformation are assumed 
to be very small compared with the change of lattice 
energy E and are neglected, so that 

C,jhk=(1/V)(O2E/OnOOnhk)O. (8) 

This is equivalent to considering the frequencies of 
vibrational modes to be independent of volume and, 
more generally, of the crystal state of isothermal 
strain, which is exactly true in harmonic lattice 
dynamics and is a satisfactory approximation as far 
as anharmonic effects can be neglected (not very high 
temperatures). In the frame of this treatment, the 
variation of elastic constants with temperature 
depends only on the change of lattice energy due to 
thermal expansion: using unit-cell parameters and 
atomic coordinates measured at different tem- 

5- Appendices I, II and III have been deposited with the British 
Library Lending Division as Supplementary Publication No. 
SUP 42187 (8 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 

peratures, in principle one can calculate the thermal 
dependence of E and then of Cijhk by means of (8). 

The above definition of elastic constants holds if 
no internal strains are caused inside the unit cell by 
the external lattice deformation, i.e. if the atomic 
displacements obey (1) (this must happen by sym- 
metry reasons when atoms lie on inversion centres). 
If the atomic fractional coordinates do not remain 
constant, the total strain of the crystal structure is 
represented by the sum of the homogeneous lattice 
strain and of inner strain (Born & Huang, 1954). In 
this case the elastic constants defined by (8) make up 
just the contribution of the first strain term, to which 
that of the second term must be added to obtain the 
total values; the two contributions have been called 
partial and inner elastic constants, respectively, by 
Cousins (1978). In the present paper internal strains 
are not taken into account explicitly (cf. however the 
discussion of the rigid-body approximation below); 
the minor contribution of inner elastic constants will 
be considered in subsequent work. 

According to the Voigt contraction of 7/o into n~ 
components, it follows from doubling of extra- 
diagonal terms t h a t  o 2 E / O n p  onq = o 2 E / o n i j  Onhk, SO 

that also elastic constants turn from four-index into 
two-index components: cpq = %hk. In order to relate 
energy derivatives with respect to strain components 
to energy derivatives with respect to lattice constants, 
the straightforward way is to use the general differ- 
entiation formula 

6 

(0 2 E / 0 n~0 nq)o = E,,j (a 2 E / 0a$ 0a~)o 
1 

x (oa;I on. )o(Oajl onq 1o 
6 

+E,  (OE/Oa~)o(O2a[/On. 0nq)o; 
1 

(9) 

all derivatives must be calculated at zero strain, i.e. 
for rh = 0  and a~= a~ ( i =  1 , . . . ,  6). For calculating 
the derivatives of lattice constants with respect to 
strain components, (6) is solved for G', obtaining 
G '=  Q-~(ll +d) ;  then, by means of the differentiation 
formulae Oa~/Onp= ~6=l (Oal/OGth)(OG'h/Onp ) and 
a2a;Ion. 0nq = Y,6 k:,. (O~-a;IOG'h OG'k)(OG'hlOn.) 
×(0O~,/O~q), the following expressions are derived: 

6 

(0a'i/0n.)o = Eh (Oa;/aG'h)o(Q-')hp, 
1 

6 

(a2a[/On, 0nq)o = ~h,k (02al/OG'h 0G~,)o 
1 

x (Q- ' ) . . (Q- ' )~ .  (10) 

The matrix Q-a corresponding to the R expression 
given in (5) was calculated and is as follows: 
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Q - t =  2 

"a 2 sin 2 fl sin 2 y* a 2 sin 2 fl cos 2 y* a 2 cos 2 fl 
0 b 2 sin 2 a b 2 cos 2 a 
0 0 c 2 
0 0 2bc cos a 
0 0 2ac cos fl 

0 - E a b  sin a sin fl 2ab cos a cos fl 
X COS y* 

- a 2 s i n f l c o s f l c o S Y * b  2 sill a cos a a2 sin fl cos fl sin Y * O  - a 2  sin213 iul Y* cos Y* 1 

0 0 • 
b c s i n a  0 : 1 '  

- a c  sin fl cos y* ac sin fl sin y* 
ab (sin a cos [3 ab cos a sin fl sin y* ab sin a sin/3 sin y* l 
-cos  a sin fl cos y*) ] 

(11) 

of course, it depends on the orientation chosen for 
the Cartesian basis O with respect to the undeformed 

0 ai/OGh OGPk unit cell. The quantities Oa~/OG'h and 2 , , 
are obtained by straightforward differentiation; put- 
ting them into (10), the full set of derivatives of lattice 
constants with respect to strain components is worked 
out and is reported in Appendix II . t  After substitution 
into (9), and with (8) taken into account, the formulae 
required, which relate the elastic constants to energy 
derivatives with respect to lattice parameters, are 
obtained. With (OE/Oa~)o and (oEE/Oa~ OaJ)o written 
as OE/Oai and OEE/OaiOaj for shortness, the 
expression for c1~ appears as follows: 

c~l=(1/V)[sin 4 /3 sin 4 y*(a E oEE/OaE--a OE/Oa) 

+s in  E/3 cos 2/3 sin 4 y* 02E/0/3 E 

+sin  2 y cos 2 y sin 4/~* 02E/OTE+2 sin/3 cos/3 

xsin y cos y sin E/3* sin E T* c)EE/o/3 cgy 

+ 2 a  sin 3/3 cos 13 sin 4 Y* 02E/Oa 0/3 

+ 2 a  sin 3 y cos y sin 4/3* oEE/Oa Oy 

- s i n / 3  cos /3 (1+2  sin 2/3) sin 4 Y* OE/Ofl 

- s i n  y cos 7 ( 1 + 2  sin 2 Y) sinafl * OE/Oy]. (12) 

The expressions for the 20 triclinic elastic constants 
left are even longer than this one, and are not reported 
here; however, they can easily be derived from (9) 
and the tables of derivatives in Appendix II, as 
explained above. Instead we show below the special 
set of relationships for the 13 non-zero monoclinic 
elastic constants, which are much simpler: 

cl~=(1/V)[sin 4 /3(a E oEE/OaE-a OE/Oa) 

+sin 2/3 COS 2/3 02E/0/3 2 

+ 2 a  sin 3 13 cos/3 oEE/Oa 0[3 

--sin/3 cos/3(2 sin E/3 + 1) OE/Ofl] 

CEE = (1 /V)(b  E OEE/Ob E- b OE/Ob) 

%3-  (1 /V)[c  E oEE/OC E- c OE/Oc 

+COS 4/3(a 2 02E/Oa2-a OE/Oa) 

+Ea  cos 2/3 02E/Oa 0c+s in  E/3 cos E/3 02E/0/3 E 

- 2 a  sin/3 cos 3/3 02E/Oa 0/3 

- 2 c  sin/3 cos/3 oEE/Oc Off 

+sin  13 cos/3(2 cos E/3 + 1) OE/Ofl] 

i See deposition footnote. 

c12=(1/ V)(ab sin 2 fl 02E/Oa Ob 

+ b sin fl cos fl 02E/Ob Off) 

c13 = (1 /V)[ac  sin 2/3 02E/Oa Oc 

+s in  2/3 cos 2/3(a 2 oEE/OaE-a OE/Oa 

-02E/0/32)+ c sin/3 cos/3 02E/Oc 0/3 

+ sin/3 cos/3 (2 cosE/3 -- 1) 

x ( a  OEE/Oa 0/3-0E/0/3)] 

CE3 = (1/V)(bc  OEE/Ob Oc+ ab cos E/3 oEE/Oa Ob 

- b  sin/3 cos/30EE/Ob 0/3) 

c44 = (1/V)(OEE/oa 2 + 2 cos/3 02E/Oot Oy 

+ COS 2/3 02E/OY E) 

c55 = (1/V)[sin*/30ZE/O/3 2 

+s in  E/3 cos E/3(a 2 02E/OaE-a OE/Oa) 

- E a  sin 3/3 cos/3 oEE/Oa 0/3 

+sin/3  cos/3(2 sin 2/3 -- 1)OE/Ofl] 

c66 = (1/V)  sin 2/3 02E/Oy 2 

c46 = (1/V)(s in fl oEE/oa 03,+sin/3 cos/3 02E/0y E) 

c15 = (1/V)[s in 3/3 cos/3(a 2 02E/Oa 2 

- a OE/Oa-OEE/O/3 E) 

+ sin 2/3 (2 cos 2/3 - 1) 

x ( a  02E/Oa 0/3-0E/0/3)] 

CEs=(1/ V ) ( - b  sin E/30EE/Ob 0/3 

+ ab sin/3 cos/3 oEE/Oa Ob) 

c35 = ( 1 / V ) [ - c  sin 2/3 oEE/Oc 0/3 

+sin/3  cos 3/3(a 2 oEE/OaE--a OE/Oa) 

+ sin 3/3 cos/3 oEE/ofl E 

- 2 a  sin 2/3 cos 2/3 oEE/Oa 0/3 

+ ac sin/3 cos/3 oEE/Oa OC 

+s in  2/3(2 cos E/3 + 1)OE/Ofl]. (13) 

These equations (and also the corresponding ones 
for the general triclinic case) hold for the orientation 
of the Cartesian basis given by (5); if another R matrix 
is assumed, then different relationships are obtained. 
The alternative monoclinic orientation il = a/a, iE = 
b / b, i 3 -" e*/ c* was considered, repeating the whole 
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analytical procedure until new equations replacing 
(13) were derived. These equations were also obtained 
from (13) by using the tensorial transformation rule 

C;hk ' - "  ~ ¢ m n p q T m i T n j T p h T q k ,  (14) 
In, rl,p, q 

where T = (sin 13 0 -cos /3  / 0 1 0 / cos/3 0 sin/3) is 
the transformation matrix of Cartesian axes from the 
former to the latter orientation, and Cmnpq and C~jhk 
are the elastic constants in general tensorial notation 
referred to such orientations, respectively (the con- 
tracted Voigt convention cannot be used for transfor- 
mations of axes). To obtain the same result by two 
different ways is a good check for the correctness of 
calculations. Further, for the sake of comparison with 
experimental values, it is important to choose the set 
of equations corresponding to the orientation of 
Cartesian axes used in the measurements. 

M e t h o d  o f  c a l c u l a t i o n  

Equations (13) hold quite generally for any type of 
interatomic forces. To perform actual calculations, 
however, a particular energy model has to be 
specified; the following simple two-body potential is 
the most widely used for semiempirical computations 
in complicated structures: 

V( r U) = e 2 z,zj / r 0 d, dj / 6 8 
- -  r ij - qiq.i / r ij 

+ bib j exp (--rij / Pij); (15) 

e is the electron charge, and r0, P0, zi, d~, qi, b~ are the 
distance between atoms i and j, the hardness param- 
eter of ij repulsion, the atomic charge (in e units), 
the dipole-dipole dispersive, the dipole-quadrupole 
dispersive and repulsive constants, respectively. This 
potential accounts reasonably for both ionic 
(dominant electrostatic term) and molecular 
(dominant dispersive term) crystals; in the former 
case it is known as a Born-Mayer (Tosi, 1964), in the 
latter as a Buckingham (Williams, 1981) potential. A 
substantial fraction of bond covalency can also be 
taken into account by letting the moduli of atomic 
charges z~ take smaller values than those required by 
pure ionicity. 

An important class of solids is characterized by the 
presence of molecular groups, containing covalent 

~C)  I O  _ _ 

Fig. 1. Symmetrical angular strain of a bidimensional unit cell, 
keeping the orientation of the molecular unit constant with 
respect to the crystallographic axes. 

interatomic bonds. Then only the intermolecular 
energy can be expressed by (15), while intramolecular 
interactions should be accounted for either by an 
appropriate covalent force field, e.g. the Morse poten- 
tial (Williams, 1981; Price & Parker, 1984), or by a 
rigid-body approximation, implying that the 
molecular groups are quite undeformable under stress 
(Catti, 1982; Matsui & Busing, 1984). In the former 
case internal strains must be taken into account 
explicitly in a deformed crystal, as chemical bonds 
governed by different kinds of potentials will respond 
to stress inhomogeneously; in the latter, on the other 
hand, a pure external deformation of the crystal struc- 
ture is quite conceivable, since the centre-of-mass 
position vectors of molecular units can be deformed 
homogeneously. However, a rigid-body external- 
strain approximation requires also that the molecular 
orientation with respect to the lattice is not changed 
during the deformation process; this may be accom- 
plished in the simplest way by causing the a, /3, T 
cell angles to strain symmetrically with respect to the 
initial configuration. A bidimensional example of this 
process is shown in Fig. 1, and in Appendix III* the 
transformation matrix from a monoclinic to a triclinic 
lattice deformed symmetrically is derived. 

According to the previously developed formalism 
(Catti, 1978, 1981), by summing the terms (15) over 
all atomic pairs an expression for E is obtained that 
is an explicit bilinear function of the potential 
parameters zi, bi, di, q~. This bilinear dependence is 
also preserved in derivatives of the energy with respect 
to lattice constants: 

(02E/Oa; Oa;)o ~ Y. 2 ,, , = [Zrgs(0 Crs/Oai Oa~)o 
r=l s=r  

+ d~<(O2C~°/Oa; Oa~)o 

+ q,.q,(O2C~O/Oa; Oaj)o 
2 R t + b,b,(O C J O a ,  0aj)o]; (16) 

an analogous formula holds for first derivatives, too. 
The Crs coefficients depend only on lattice constants 
and on atomic fractional coordinates, except for C R 
depending on the Pu parameters as well; their explicit 
expressions are reported in our previous papers (the 

el Crs quantities contain the rapidly converging Ewald 
double series). All derivatives of these coefficients 
were calculated analytically for a monoclinic unit cell 
deformed to triclinic; explicit formulas are available 
from the author on request. Particular care has to be 
taken when the rigid-body approximation is con- 
sidered, as in that case the atomic fractional coordi- 
nates have non-zero derivatives with respect to lattice 
constants. A general interatomic vector inside the 
rigid molecular group is not affected by a lattice 
deformation, which then can be interpreted as a 

* See deposition footnote. 
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Table 1. Calculated elastic constants (GPa) (neglecting internal strains) for three crystalline compounds, 
compared to experimental adiabatic values (literature data) 

R e f e r e n c e s  to  c rys t a l  s t r u c t u r e  d a t a  a n d  p o t e n t i a l  p a r a m e t e r s  u s e d  a r e  g i v e n  in  t h e  tex t .  

MgF2 a = 4.628 A 
(futile-type) c = 3.045 A exp 
P42/ mnm ealc 

C6H 6 a = 7-44 A 
benzene b = 9.55 A exp 
Pbca c = 6.92/~, cale 

CloHs a = 8.266 A 
naphthalene b = 5.968 ,~, exp 
P21/a c = 8.669 A, calc 

Cll C33 CI2 C13 C44 C66 
137 199 87 61"5 56"4 95"5 ( T = 2 9 3  K) 
138 252 90 59"2 59"1 90"1 

cll c22 ~3 c12 el3 ~3 c ~  45 ~6 
6.1 6.6 5"8 3"5 4"0 3"9 2.0 3"8 1"5 
9.8 9"2 8"3 3"0 6.1 3"5 1"6 1"8 1-5 

clt ~2 ~3 c12 c13 ~3 c ~  45 c~  c15 
8-2 10.0 12.4 5.6 3.2 3.5 3.4 2.3 4.4 0.2 

13"1 9.8 18"4 5-7 2.0 4-6 1"7 5"6 2"9 --0.3 

(250 K) 

C25 C35 ¢46 
1"9 --2"9 0"7 (293 K) 
1"6 -1"0 0"9 

simple change of crystallographic reference frame to 
express the components of that vector. If D is the 
matrix whose columns represent the vector com- 
ponents of the undeformed monoclinic basis ! with 
respect to the deformed triclinic basis I ' ,  we have 
x ( I ' ) = D x ( ! ) ,  where x(I ')  and x(I)  are the com- 
ponents of an interatomic vector x of the molecular 
unit with respect to basis I '  and I, respectively. 
Therefore, 

[02x(I')/Oa[ Oafi]o=(a2D/Oa[ aa~)oX(I). (17) 

By this formula the energy derivatives (16) were 
calculated also in the rigid-body approximation; the 
D matrix corresponding to a symmetrical deformation 
was used (cf. Appendix III), so that such derivatives 
can be considered to correspond to 'constant orienta- 
tion' of the rigid molecular group. A computer pro- 
gram in Fortran was written to perform the calcula- 
tions. 

Discussion 

Elastic constants were calculated for three com- 
pounds: a typical ionic solid, MgF2 (ruffle-type struc- 
ture), and two molecular crystals for which the rigid- 
body approximation was used, benzene C6H6 and 
naphthalene C10H8. In all three cases measured values 
of elastic constants, experimental structural data and 
parameters of potentials of type (15) fitted to struc- 
tural properties are available in the literature. The 
potentials optimized so as to reproduce only the 
equilibrium atomic arrangement are known to give a 
not too good agreement with elastic properties; thus 
these calculations are just a simple check of the 
method, and cannot discriminate surely between 
inadequacy of the approximations and inadequacy 
of the potential to explain the differences between 
calculated and observed elasticity data. 

Structural parameters from neutron diffraction 
refinements were used for tetragonal MgF2 (Vidal- 
Valat, Vidal, Zeyen & Kurki-Suonio, 1979), ortho- 
rhombic benzene (Bacon, Curry & Wilson, 1964) and 
monoclinic naphthalene (Pawley & Yeats, 1969). The 
potential parameters for the ionic compound were 

determined by Yuen, Murfitt & Collin (1974) by the 
WMIN program (Busing, 1970). For both molecular 
crystals Williams's (1974) parameters, fitted to the 
structural configurations of 18 solid hydrocarbons 
(half aromatic and half aliphatic), were used; it 
should be remarked that the Po values had not been 
optimized but kept fixed to those derived from the 
graphite structure (C-C), from the quantum- 
mechanical repulsion of two H2 molecules (H-H), 
and simply from their average value (C-H). Besides, 
following the same author, the positions of the H 
atoms were fixed so as to have C-H bonds 1.027/~ 
long, on the basis of the assumption that attractive 
or repulsive centres correspond to bonding electrons 
and so are closer to C atoms than H nuclei are. The 
calculated elastic constants are reported in Table 1 
and compared to experimental values (Haussiihl, 
1968; Heseltine, Elliott & Wilson, 1964; Afanas'eva, 
1968) for all three compounds. 

The agreement appears to be good for MgF2, 
whereas for benzene and naphthalene it is less good, 
but not unreasonable. The worst results are shown 
by the diagonal constants c11, c22, c33 of the two 
organic compounds, tending to give calculated values 
systematically larger than the measured ones. This 
might be due to neglect of thermal effects, which are 
much more important for molecular than for ionic 
crystals; however, this explanation was discarded 
after repeating all calculations for naphthalene with 
structural data determined at liquid N2 temperature 
(Brock & Dunitz, 1982) and comparing results with 
elastic constants measured at the same temperature 
(Afanas'eva, 1968): both calculated and experimental 
values were larger than the corresponding room- 
temperature constants by about 50%, but their dis- 
crepancy did not change appreciably. Thus, if the 
observed disagreement is to be ascribed to approxi- 
mations inherent in the model used, a more effective 
reason would probably be the neglect of contribution 
of internal strains, which would increase the stiffness 
of the crystal structure artificially to make up for 
missing molecular rearrangements inside the unit cell. 
However, we believe that the fitting of potential par- 
ameters of benzene and naphthalene was really too 
rough for this kind of calculation, so that it masks 
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the possible insufficiency of  model  approximat ions .  
In this respect, too, the results obtained seem to be 
encouraging;  much  work is needed to improve the 
potentials,  i f  very accurate computat ions  of  elastic 
constants are wanted. 

Financia l  support  is acknowledged from the 
Ministero Pubbl ica  Istruzione and Consiglio Nazion-  
ale delle Ricerche, Roma. 

References 
AFANAS'EVA, G. K. (1968). Kristallografiya, 13, 1024-1027. 
BACON, G. E., CURRY, N. A. & WILSON, S. A. (1964). Proc. R. 

Soc. London Set. A, 279, 98-110. 
BORN, M. & HUANG, K. (1954). Dynamical Theory of Crystal 

Lattices. Oxford: Clarendon Press. 
BROCK, C. P. & DUNITZ, J, D. (1982). Acta Cryst. B38, 2218-2228. 
BUSING, W. R. (1970). Trans. Am. Crystallogr. Assoc. 6, 57-72. 
BUSING, W. R. & MATSUI, M. (1984). Acta Cryst. A40, 532-538. 
CATLOW, C. R. A. & MACKRODT, W. C. (1982). ComputerSimula- 

tions of Solids. Lecture Notes in Physics, Vol. 166. Berlin: Springer. 
CATrI, M. (1978). Acta Cryst. A34, 974-979. 
CATTI, M. (1981). Acta Cryst. A37, 72-76. 
CA'r'rl, M. (1982). J. Phys. Chem. Solids, 43, 1111-1118. 

CAT'rI, M. (1984). Acta Cryst. A40, C146. 
COUSINS, C. S. G. (1978). J. Phys. C, 11, 4867-4879. 
HAUSS/3HL, S. (1968). Phys. Status Solidi, 28, 127-134. 
HESELTINE, J. C. W., ELLIOTT, D. W. & WILSON, O. B. (1964). 

J. Chem. Phys. 40, 2584-2589. 
KITAIGORODSKII, A. 1. (1973). Molecular Crystals and Molecules. 

New York: Academic Press. 
MATSUI, M. & BUSING, W. R. (1984). Phys. Chem. Miner. 11, 

55-59. 
NYE, J. F. (1957). Physical Properties of Crystals. Oxford: Claren- 

don Press. 
PAWLEY, G. S. & YEATS, E. A. (1969). Acta Cryst. B25, 2009-2013. 
PRICE, G. D. & PARKER, S. C. (1984). Phys. Chem. Miner. 10, 

209-216. 
SCHLENKER, J. L., GIBBS, G. V. & BOISEN, M. B. JR (1978). Acta 

Cryst. A34, 52-54. 
TosI, M. P. (1964). Solid State Phys. 16, 1-120. 
VIDAL-VALAT, G., VIDAL, J. P., ZEYEN, C. M. E. & KURKI- 

SUONIO, K. (1979). Acta Cryst. B35, 1584-1590. 
WALLACE, D. C. (1972), Thermodynamics of Crystals. New York: 

Wiley. 
WILLIAMS, D. E. (1974). Acta Cryst. A30, 71-77. 
WILLIAMS, D. E. (1981). Crystal Cohesion and Conformational 

Energies, edited by R. M. METZGER, pp. 3-40. Topics in Current 
Physics, Vol. 26. Berlin: Springer. 

YUEN, P. S., MURFITr, R. M. & COLLIN, R. L. (1974). J. Chem. 
Phys. 61, 2383-2393. 

Ac ta  Cryst. (1985). A41,500-511 

Least-Squares Absolute-Structure Refinement. 
Practical Experience and Ancillary Calculations 

BY G. BERNARDINELLI AND H. D. FLACK 

Laboratoire de Cristallographie aux  Rayons  X ,  Universitd de Gen~ve, 24 quai Ernest  Ansermet ,  
C H -  1211 Gen~ve 4, Switzer land 

(Received 14 February 1985; accepted 3 May 1985) 

Abstract  

The least-squares ref inement of  non-centrosymmetr ic  
crystal structures as inversion twins is presented.  It 
is shown that  the absolute-structure (twin) parameter  
x may be used to define the chirality or polari ty of 
un twinned  crystals. The method has been appl ied  to 
20 compounds .  The least-squares ref inement of  the 
absolute-structure parameter  is rapid and stable. The 
value of x general ly falls within three e.s.d.'s of  the 
physical ly meaningfu l  range 0-< x - 1 and the e.s.d.'s 
increase as f '  becomes smaller. New residual  and 
goodness-of-fit  values are defined to judge  the 
efficiency of  the method.  The est imated s tandard devi- 
ation of  x, taken with a pseudo Durb in -Wat son  d 
statistic, provides an excellent criterion for the relia- 
bility of  the absolute-structure determinat ion.  Refine- 
ments on data  sets including very accurately measured  
Friedel pairs of  reflections have also been tested. The 

determinat ion of  the free direction(s) of  origin-free 
space groups and an efficient algori thm for the inver- 
sion of  a crystal structure that refines to x-~ 1 are 
given in detail.  The data  and procedural  structures 
necessary for an efficient computer  implementa t ion  
of absolute-structure ref inement  are also considered. 
The formulae  giving the correction for the effects of  
anomalous  dispersion on IFobsI from an inversion- 
twinned crystal are given. These corrected Fobs are 
the ones to be used in an electron-density calculation. 
The correlation of residuals following least-squares 
refinement is quantif ied by using a pseudo Durb in -  
Watson d statistic. The causes of the correlation, its 
effect on the value of  x and its e.s.d., and ways of  
avoiding the correlation are considered. It is shown 
that in using x it is more suitable to refine on IFI 2 
than IF[. A weighting scheme is presented and  tested 
that increases the sensitivity of  a ref inement to 
absolute structure. 
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